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Abstract

Using our recently developed lattice model of gel electrophoresis, we study the sieving of large particles in random
two-dimensional gels. We observe that a particle cannot migrate when the gel concentration exceeds a critical value, called
the percolation threshold. The relationship between the percolation concentration and the particle size is determined. Finally,
we show that in principle one can design ‘templated’ sieving matrices for special purposes.
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1. Introduction

The electrophoretic mobility of a particle of size R
in a gel of concentration C is determined by its
electric charge and the kinetic resistance (also called
the retardation effect) of the gel to its drift motion.
The  Ogston-Morris-Rodbard-Chrambach ~ Model
(OMRCM) of gel electrophoresis [1-9] assumes that
the mobility u of a (rigid) particle is given by

R.C) V,(R.C)
”(MO = = fR.C) (D

where u, is the so-called free-solution mobility
(which can also be a function of R), and V, is the
volume available to the particle within a total gel
volume V. The reduced mobility u*(R,C)=u(R,C)/
Wy, is thus assumed to be equal to the fractional gel
volume f(R,C) available to the particle. This model is
often used to analyze data related to the separation of
various particles and molecules, including nucleic
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acids, by gel electrophoresis. As we discussed in the
first part of this series [8] (which we will denote Part
I), this model uses the fractional available volume
fIR,C) as the only parameter to characterize the
sieving properties of the gel, regardless of its ar-
chitecture. In this sense, it is a mean-field model and
it cannot account for the subtle effects of the
correlations between the positions of the gel fibers.
Also, it does not permit the study of very dense
systems (high concentrations or large migrating
particles) where the concept of percolating pathways
is clearly of foremost importance.

Using the Poisson distribution, Ogston [1] derived
the probability that a rigid sphere of diameter R can
be placed in a random array of long, randomly
oriented fibres:

fIR,C)=e K®C (2)

where C is the gel concentration and K(R) is
retardation coefficient. This expression is generally
used in conjunction with Eq. (1) to analyze data. Eq.
(2) can also be used for random two-dimensional
systems if Poisson statistics apply. From Eq. (1) and
(2), we get

0021-9673/97/$17.00 © 1997 Elsevier Science BV. All rights reserved

PI1 S0021-9673(97)00118-0



40 G.W. Slater, J.R. Treurniet | J. Chromatogr. A 772 (1997) 39-48

In [u(R,C)] = In [u,] — KR)C (3)

The Ferguson plot, In u vs. C, is then predicted to be
linear, and the mean pore size can be estimated from
the retardation coefficient K(R) (the slope) if the size
R is known [3-6,10].

In Part I [8], we described the basic elements of a
new lattice model of Ogston sieving. This model can
be used to study an important class of problems, the
sieving of rigid, spherically symmetric particles (in
fact, one can also study the sieving of rod-like
particles using this model; this will be the subject of
a forthcoming article) in arbitrary gel structures, in
the limit of low field intensities. For such systems,
we demonstrated that Eq. (1) comes from a mean-
field approximation. Our exact solutions indicated
that f(R, C) is not generally sufficient to describe the
sieving properties of a gel because it does not
consider the existence of percolating pathways in the
gel and it neglects the fiber—fiber correlations. We
also showed that the curvature of the Ferguson plot
is actually related to the degree of disorder present in
the gel structure. In Part II [9], we studied sieving in
simple periodic two-dimensional gels because these
ideal gels provide well-defined pore and fiber sizes
(something which cannot be done unambiguously
with random gels). We showed that a generalized
retardation coefficient K can be defined for such gels,
and that one can indeed derive an estimate of the
effective pore size a,, and fiber radius ry from
experimental data. In this paper (Part IIT), we present
a study of random two-dimensional gels. In this case,
the concepts of mean pore size and effective fiber
radius are not clear. Therefore, we focus our atten-
tion on two different problems. First, we examine the
conditions under which a particle cannot move
through a random gel. This phenomenon has been
observed by Serwer et al. [11] and is related to the
concept of percolation [12]. Beyond a certain perco-
lation concentration C*(R), a particle of size R has a
zero mobility even though its available volume f(R,
C) is still finite. The relation C*(R) is compared to
the mean pore size obtained from a Ferguson plot
approach in order to understand the type of in-
formation one can derive from mobility measure-
ments. Second, we demonstrate that one can in
principle design periodic gels, with large and non-
trivial ‘templated’ unit cells, for special purposes.

The paper is organized as follows. In Section 2,
we briefly describe our model and how we calculate
the exact zero-field mobilities of large particles
migrating through random gels (the reader should
refer to Part I and Part II for more technical details
about the mathematical aspects). Section 3 describes
typical results for one gel concentration and several
particle sizes, as well as for one particle size and
several gel concentrations. The concept of percola-
tion is then explained and the percolation concen-
tration C*(R) i1s determined. In Section 4, we show
that one can design gels leading to almost any
desired mobility vs. molecular size relationship. Our
conclusions are found in Section 5.

2. Our model

After we developed a Monte Carlo method [7] to
study the electrophoretic motion of hypercubic par-
ticles on hypercubic lattices (for any dimension d>
I; d=1 gives the trivial result & =0 in the presence
of obstacles), we demonstrated in Part I how the
zero-field electrophoretic mobility of this particle can
actually be calculated exactly if we use a finite-size
lattice with periodic boundary conditions (the gel
fibers are represented by forbidden lattice sites). In
this section, we briefly summarize the biased ran-
dom-walk model and the mathematical methods used
to calculate the exact electrophoretic mobility of
RXR particles (R is thus the ‘diameter’ of the
particle) moving in a two-dimensional random gel
made of 1X1 obstacles (Fig. la). Note that for
simplicity, only 1X 1 obstacles will be considered in
this article.

In the unbiased lattice random-walk model, the
mean time duration of a jump is given by the
Brownian time 7, =L’/(2D,), where L is the lattice
parameter and D, is the free solution diffusion
coefficient of the particle. In the presence of an
electric field E pointing in the +x direction, the walk
becomes biased in the x-direction and the reduced
time duration 7*(&) of a jump for a particle of charge
Q is given by [8.9]:

T tanh(&)

= P 1+ 07) 4)

TF =
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if the jump is made in the *x direction, and by
=1 for £y jumps. Here, e=QLE/(2k,T) is the
scaled field intensity, k, is Boltzmann’s constant,
and T is the temperature. Note that to the first order
in &, the jumping frequency 1/7% is the same for the
x- and y- directions. To first order &, the probabilities
for the next jump to be in the *x or *y directions
are [8,9]:

Pex =4 =7 (£), p:_y_4 (3)

where we clearly see the bias favouring +x jumps.
At each time step, the particle moves to one of the
2d (=4 in two-dimensions) adjacent sites according
to the probabilities given by Eq. (5). If the particle
overlaps with an obstacle after the jump, the move is
rejected and the particle returns to its previous
position; nevertheless, the time step counts. This
jump rejection process models the hard core interac-
tions between the solute and the gel matrix. To
simplify the notation, all times and lengths will be
dimensionless in the rest of this article (i.e., times
will be measured in units of 7, and lengths in units
of L, such that velocities will be measured in units of
L/1y), and only the reduced mobility p*=u/p, will
be of interest.

The exact velocity of a particle on a lattice of size
NXN (with periodic boundary conditions) can be
calculated as follows (it can also be estimated using
Monte Carlo simulations). We must first calculate the
steady-state probability of presence p, of the particle
on the vacant sites of the lattice using rate equations
describing the dynamics of the particle jumps (the
transient period that follows the application of the
field is not studied). This reduces the problem to a
system of coupled linear equations for the p,’s (one
equation for each empty lattice site). Once the p,’s
are known, we calculate the mean velocity v by
mutiplying the p.’s by the local electrophoretic
velocities v; for each site [8,9]. Since we study the
low-field limit £—0, we do all our calculations to
first order in & (we drop all higher order terms). At
the end of the calculation, we simply take the limit
for £—=0 in order to obtain the zero-field reduced
mobility u*(R, £=0). It is important to note that the
result of such a calculation is exact, i.e. the mobility
is exact for the specific distribution of obstacles and
system size N under study.

In the case of large R X R particles moving through
a random gel made of 1X1 obstacles (the case
studied in this article), we can simplify the problem
by increasing the size of the obstacles to R XR and
shrinking the size of the migrating particle to 1X1
(see Fig. 1b) [9]. The two problems are mathemati-
cally identical, but the latter is somewhat easier to
handle. We wrote a Mathematica® program that
creates a gel structure, determines the corresponding
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Fig. 1. (@) A random 2D gel of size N=24 and concentration
C=1/64. The dark squares are 1X1 obstacles (‘gel fibers’) and
the grey 5X3 square is the migrating particle. (b) A 1X1 particle
is migrating in a gel made up of 5X35 obstacles. These two
problems are mathematically equivalent.
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rate equations, solves for the p,’s, and finally calcu-
lates the exact reduced mobility u*(R,C,&— 0).

As an example, we will show the exact results for
the example given in Fig. 1. The 5X35 particle
moving in the random gel structure of concentration
C=1/64 shown in Fig. 1a and the 1X1 particle in
Fig. 1b are equivalent. The position of 9 single-site
obstacles (Fig. la) were chosen randomly with the
constraint that they could not overlap. The size of the
lattice is N=24, i.e. the system has 576 lattice sites
with periodic boundary conditions. For simplicity,
we will use Fig. 1b. The time-independent steady-
state probability p, for the particle to occupy site
i=1 (as shown in Fig. 1b) is due to the probability
flow from the adjacent sites:

1 1 1+¢ 1+&
P1=ZP4+ZP3+ 4 Dyt 4 P (6)

The first three terms on the r.h.s. of Eq. (6) simply
calculate the total probability for a particle from one
of the three empty adjacent sites (Nos. 4, 3 and 2,
respectively) to jump onto site No. 1. The last term
is due to the reflection of the particle on the obstacle.
We thus have, M =371 such equations (one for each
empty site on Fig. 1b), of which only 370 are
independent. The normalization condition provides
the 371" equation

> p=1 (7)
i=1

Once the probabilities P={p,, p,,....py} are calcu-
lated, we must calculate the local velocities V=
U,.Uy,...Uy. For a biased random walk, the local
velocity is simply given by v,=p L, —p_.L_;
here, L. =1 if there is no obstacle in the *x
direction, and 0 otherwise. The p. , are given by Eq.
(5). Finally, the zero-field reduced electrophoretic
mobility u* is related to the scalar product of the
probability vector P with the velocity vector V as
Mg e—50 &

where p,=1/2 is the free solution (no obstacle)
dimensionless mobility. For the example shown in
Fig. 1, we get pu*=0.348559... (with arbitrary preci-
sion). Again, this result is exact (no error bar).

If the gel structure is random, however, one must
actually redo the calculation for a large number of

N=24 lattice; R=5 particle
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Fig. 2. Bar chart showing the number of times a mobility p* was
obtained when one thousand N=24 and C=1/64 random lattice
systems were generated. The migrating particle had a size R=3.

systems (with different random patterns) of size N X
N and average over the results. Fig. 2 shows the
distribution of mobilities found for the N =24 lattice
case studied above. One thousand systems were
generated. The mean value is u*=0.5441+0.0042,
while the most probable value is around 0.6. We also
note that 16 systems showed a zero mobility; in these
cases, the obstacles created a vertical percolating
wall across the system and the particle could not
migrate over macroscopic distances. The distribution
is quite wide (the standard-deviation is about 0.13),
indicating that large concentration fluctuations can
exist in such small systems. However, this wide
distribution also suggests that one can build periodic
gels, with e.g. a N=24 unit cell, with many different
sieving properties. We will discuss this interesting
point further in Section 4.

To find the true thermodynamic mobility, one
must in principle find the exact reduced mobility u*
for N—x. In practice, one calculates the average
mobility u*(R, N) for increasing values of N until an
asymptotic value p*(R) is obtained. Note that the
CPU time required to solve the =N ? master equa-
tions increases roughly like N 6, while the standard-
deviation decreases for larger values of N. Table 1
gives an example for the C=1/64 and R=35 system.
The reduced mobility u*(R, N) essentially ceases to
vary (to within the error bar) for system sizes N =40.
The mobilities used for the rest of this article
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Table 1

Reduced mobilities u* for a 55 particle moving in a gel of concentration C=1/64 for different lattice sizes N

Ensemble size Lattice size
(and number of non- N

Total Average reduced
number of mobility p*

percolating systems) obstacles (with error bar)
Exact result (0) 8 1 0.661879...
1000 (6) 16 4 0.5814 (48)
1000 (16) 24 9 0.5441 (42)
200 (5) 32 16 0.5260 (83)
109 (4) 40 25 0.512 (12)
139 (3) 48 36 0.494 (17)
50 (4) 56 49 0.5187 (93)

The obstacles are of size 1X1. The average mobility is calculated using all the systems in the ensemble (see first column), including those
which were not percolating (giving a zero-mobility). The error on the mobility is given in parenthesis, on the last one or two digits. As can
be seen, the effect of the lattice size essentially disappears for systems sizes N =40.

represent the asymptotic values obtained for N =48,
unless specifically stated otherwise. The calculations
were done on two IBM RISC/6000 workstations and
required a minimum of 96 MB of RAM. The
Mathematica programs are available upon request.

3. Percolation through a random gel

3.1. Mobility vs. particle size R

Table 2 gives the mobility u* vs. the particle size
R for a gel of concentration C=1/64. The mobility

Table 2
Reduced mobilities u* for particles moving in a gel of con-
centration C=1/64 and size N =48 for different particle sizes R

Ensemble size Particle Average reduced
(and number of non- size R mobility u*
percolating systems) (with error bar)
49 (48) 10 0.0034 (34)
56 (47) 9 0.040 (13)
65 (48) 8 0.057 (13)
200 (39) 7 0.149 (1)
200 (2) 6 0.335 (10)
139 (3) 5 0.494 (17)
59 (1) 4 0.666 (13)
110 (0) 3 0.8022 (56)
150 (1) 2 0.8943 (59)
58 (0) 1 0.9664 (2)

The obstacles are of size 1 X 1. The average mobility is calculated
using all the systems in the ensemble (see first column), including
those which were not percolating (giving a zero-mobility). The
error on the mobility is given in parenthesis, on the last one or two
digits.

essentially vanishes for R>8 because most systems
are opaque to the molecule, i.e. the latter cannot find
a percolating pathway through the random maze
anymore. Similar calculations were performed for
concentrations C=1/256, 2/256, 3/256, 5/256 and
6/256, and the same range of molecular sizes. Fig. 3
shows how the mobility varies with particle ‘volume’
R’ for random gels of concentrations C=4/256=1/
64 and 6/256.
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Fig. 3. Reduced mobility u* vs. particle ‘volume’ R” for 48 X 48
systems of concentrations C=1/64 (top line) and C=6/256
(bottom line). The solid lines show the best polynomial fits (see
Eq. (9)); only the large mobility data was used for the fits. When
the mobility is low, the data is affected by strong finite-size
effects. Insert: A semi-log plot of the C=1/64 data.
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Table 3
Parameters found when fitting the mobility u* vs. particle volume
R? data using Eq. (9) for various gel concentrations C

C m*¥0, C) r, r, R*
1/256 0.9932 14.6 22.1 16.7
2/256 0.9909 10.1 164 11.1
3/256 0.9882 8.03 12.0 9.36
4/256 0.9850 6.80 10.1 791
57256 0.9824 6.19 9.93 6.78
6/256 0.9777 5.67 8.81 6.32

The insert of Fig. 3 shows a plot of In[x*] vs. R’
for C=1/64. The OMRCM would predict a straight
line for this plot. As we found in Part I and Part II,
the exponential dependence predicted by the
OMRCM is not found to give a good description,
except, perhaps, close to zero molecular size. Of
course, an exponential dependence cannot account
for the existence of a percolation threshold. In order
to study percolation, we must use a polynomial fit.
Indeed, an excellent fit of the data is provided by a
polynomial function of the form:

' R 2 R 4
wa0=u0.0~(775) +(5) ©
2 4

The fits for C=4/256 and 6/256 are shown in Fig.
3. Table 3 gives the fitting parameters u(0,C), r, and
r, vs. gel concentration C, as well as the critical
molecular size R* for which the fits predicts
u*C,R)=0. For example, the fits in Fig. 3 give
R*¥(C=4/256)=791 and R*C=6/256)=6.32.
Note that the points for the large particle volumes
R®, close to the percolating limit, cannot be ex-

Table 4

plained by the fit; this is an effect of the limited size
of the lattice (48 X48), and is reduced when larger
lattices are used. For example, the mobility of a
R =7 particle was found to x#*=0.104+0.007 when
200 systems of size 48 X48 and concentration C=6/
256 were generated; a study done with larger 64 X 64
systems gave u*=0.02%+0.02 with 30 systems gen-
erated, in agreement with the fact that our fit predicts
a critical size R*=6.32 for this concentration. The
fits must use only the points that are far from the
percolation threshold otherwise strong finite-size
effects affect the results. It is worth mentioning,
however, that the R=R* particle does not have a
zero fractional available volume f(R*,C): the mobili-
ty is negligible because there is no percolating
pathway through the gel. Lack of migration in
random gels has been reported by Serwer et al. {11].

If we use R* to characterize the pores of this gel,
our results (Table 3) would indicate that the ‘pore
size’ (diameter) is given roughly by @=R*=(0.67/
C)*>*. The exponent 0.54 found here is slightly
larger than the one we found (0.50) for periodic gels
in Part II. Note also that the first coefficient of the fit
appears to vary like r,=~(0.59/C )’ showing again
an exponent slightly larger than 1/2.

3.2. Mobility vs. gel concentration C

Table 4 gives the mobility u*(R=35, C) of a 5X5
particle for various gel concentrations. Here, the
mobility essentially vanishes for concentrations ex-
ceeding approximately 8/256 because of the absence

Reduced mobilities 4* for R=35 particles moving in a gel of size N=48 for different gel concentrations C

Ensemble size
(and number of non- C
percolating systems)

Gel concentration

Average reduced
mobility p*
(with error bar)

39 (0) 1/256=0.390625% 0.8742 (37)
57 (0) 2/256=0.78125% 0.7618 (51)
57.(0) 3/256=1.171875% 0.624 (13)
139 (3) 4/256=1.5625% 0.494 (17)
45 (4) 5/256=1.953125% 0.387 (22)
75 (18) 6/256=2.34375% 0.247 (18)
48 (21) 8/256=3.125% 0.095 (15)
53 (50) 10/256 =3.90625% 0.0103 (65)

The obstacles are of size 1 1. The average mobility is calculated using all the systems in the ensemble (see first column), including those
which were not percolating (giving a zero-mobility). The error on the mobility is given in parenthesis, on the last one or two digits.
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Fig. 4. Reduced mobility w* vs. gel concentration C for the
particle sizes (from top to bottom) R=1, 2, 3, 4, 5 in a 48 X48
gel. The solid lines show the best polynomial fits (see Eq. (10)).
Insert: A semi-log plot of the R=35 data.

of percolating pathways for large concentrations. Fig.
4 shows the reduced mobility u* vs. gel concen-
tration C for particles of size R=2, 3, 4, and 5 (the
size R=1 was studied in Part I). The insert shows
In[pe] vs. C for the 5X5 particle; according to the
OMRCM, this plot should exhibit a straight line. As
shown in Part II, a much better fit to data is provided
by the polynomial:

w*R C)“1—< ¢ )—(L>2 (10)
| ¢,(R) ¢;(R)

The fitting parameter c,(R) is the same for random
and periodic systems since the mobility must be the
same for all gel architectures in the zero-concen-
tration limit. These coefficients were calculated with
extremely high precision in Part II. Table 5 thus
gives the fitting parameters ¢, and ¢, for 1=R=5.
The percolating concentration C*(R) for which Eq.
(10) predicts a zero mobility is also given.

Again, in spite of the fact that a particle of size R
can still be placed in the gel for concentrations
C>C*, it has a zero net mobility because it cannot
find a percolating pathway through the gel. Beyond
C*, the particle cannot migrate over macroscopic

Table 5
Parameters found when fitting the mobility u* vs. gel con-
centration C data using Eq. (10) for various particle sizes R

Particle size R <, c, Cc*

1 0.467 1.06 104/256

2 0.158 0.680 38.4/256
3 0.0781 0.6114 19.7/256
4 0.0463 0451 11.7/256
5 0.0306 0.240 7.71/256

Parameter ¢, was taken from Ref. {9]. For R>35, there were too
many points affected by finite-size effects to obtain useful fits.

distances. If we now use C*(R) to characterize the
sieving properties of the gel, we obtain, from Table
5, that C*=~(0.66/R)'"°, which can be inverted to
give a=R=(0.49/C)"”’°. The exponent found here is
slightly larger than the one found in the Section 3.1
(0.54). For a periodic gel, we found the relation
a~(0.86/C)>*° in Part II. The apparent mean pore
size is therefore smaller in random gels for the same
concentration, which is not surprising since the
heterogeneity reduces the mobility (see Part I for a
comparison). The fact that the exponent is somewhat
larger remains to be explored in more detail but it
may explain why an exponent of 0.50 is rarely found
when the mean pore size of a gel is studied using the
Ferguson plot.

Clearly, these two cases demonstrate that the
concept of percolation is extremely important for
random gels, especially for ‘large’ concentrations. In
Parts I and II, we also showed that the correlation
between the position of the obstacles was important
to understand the low-concentration mobilities.
Knowing this, one should be able, at least in
principle, to design gel structures to achieve special
separation goals. The easiest way to do this is to
design a small gel structure that provides the re-
quired separation, and then to repeat it in order to
form an infinite, periodic gel. This is the approach
we take in the next section.

4. Designing gel structures

We saw in Fig. 2 that when a small system is used
(N=24 in this case), large mobility fluctuations
could be observed for the R=5 particle even though
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all these gels had the same concentration. In a real
gel, the structural effects fluctuate from region to
region, which certainly lead to large mobility fluctua-
tions during the migration. However, since the
particle migrates over macroscopic distances, they all
visit the same average gel and they acquire the same
average long-time mobility (small residual differ-
ences between the migrating paths of individual
particles may explain some of the band broadening).

Periodic sieving lattices can be built using the
method described earlier by Volkmuth and Austin
[13]. These lattices actually use a simple one obsta-
cle unit cell that is repeated evenly in all directions.
Here, we want to see if using a more complicated
unit cell could lead to interesting sieving properties.
For instance, Fig. 2 indicates that 24 X24 unit cells
could lead to any mobility in the range of 0.00 to
0.75, depending on the structure chosen. Can we
build such a gel in order to optimize the separation in
a specific size range?

Fig. 5 shows the mobilities of R=1, R=2, R=3,
R=4 and R=5 particles in thirty different 16X 16
random C=1/32 gels (with periodic boundary con-
ditions). As we can see, certain gels have quite
atypical sieving properties. While the mobility of the

o o o
EEN =)} oo

reduced mobility

I
to
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Fig. 5. Reduced mobility w* for five different particles in 30
different 16 X16 random C=1/32 gels. The lines, from top to
bottom, are for sizes R=1, R=2, R=3, R=4 and R=5.

small 1X1 particle does not fluctuate much, the
mobility of the largest ones is often zero because of
the percolation problem discussed in Section 3. For
gel No. 26, we note that the particles have very
similar mobilities (the largest two even co-migrate),
a remarkable result since they must have access to
very different available fractional volumes. This
result is normally typical of self-similar (fractal) gel
structures (this will be the topic of a forthcoming
article)! On the other hand, gel No. 28 shows even
stranger results: the R =4 particle is actually slower
than the R=5 one! Gel No. 5 provides reasonable
mobilities for all particles as well as a good sepa-
ration over the entire range. Fig. 6 shows these three
different gel structures. Clearly, the narrow channels
and funnel structures are responsible for the be-
haviour observed.

As we can see, simple cell structures like the ones
possible for C=1/32 periodic cells of size 16X 16,
can lead to a very wide range of sieving properties.
Instead of using randomly formed chemical gels, we
therefore suggest to design two-dimensional gels,
following the method proposed in Ref. [13], but with
larger unit cells. This could provide high-selectivity
separations for specific applications.

5. Discussion

In this article, we have used our exactly solvable
Ogston-like model of gel electrophoresis to study the
percolating properties of random two-dimensional
gels. This version of the model is valid in the
zero-field limit and for simple hard-core interactions
between the migrating particles and the gel fibers.
Again, we find that the electrophoretic mobility is
not in general proportional to the fractional available
volume f, as assumed by all OMRCM-like models.
Indeed, the existence of the percolation threshold
concentration C* cannot be explained by a mean-
field model. For low concentrations, an exponential
fit might appear to be satisfactory. However, a
polynomial fit can do better over a larger range of
concentrations; more importantly, however, such fits
allow us to extrapolate to C=C*. Fig. 3 shows that
the mobility decreases nearly linearly with particle
volume over a wide range of sizes.

We used the size of the largest particle that can
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Fig. 6. Gel systems Nos. 5, 26 and 28 corresponding to the results
obtained in Fig. 5.

move in a gel as a measure of the mean pore size, as
suggested by Serwer and Hayes [11]. Our results
demonstrate that for a given concentration, random

gels provide more resistance to the motion. The
relationship between the pore size and the gel
concentration, written as a~C °, suggests an expo-
nent y=0.54-0.59, slightly larger than for a periodic
gel (0.50).

We have observed that the mobility fluctuates
enormously for random systems that are built using
small unit cells and periodic boundary conditions.
This suggests that one can use such systems to
custom-build sieving matrices for specific applica-
tions. One can design matrix structures that are very
selective. Surprisingly, one can also build structures
which lead to essentially molecular size independent
mobilities over a wide range of sizes.

During the Prague meeting where these results
were first presented, prof. S. Hjertén described
preliminary data on ‘templated’ gels which showed
that gels with certain specific structures can increase
the separation of particies. More recently, Rill et al.
[14] showed that nanostructured, ‘templated’ gels
give different sieving results. This is essentially what
Fig. 6 demonstrates. For example, gel No. 28 affects
the R=4 particle more than the others because the
two obstacles in the middle of the gel form a channel
of width 4. Our theoretical approach can in principle
be used to design templated systems. This is current-
ly under investigation.

In conclusion, we have shown that percolation is
an important factor to consider when large particles
migrate in dense random gels. However, it is pos-
sible to design gel structures that possess almost
arbitrary sieving properties if these percolating prop-
erties are used properly.
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